# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 4-{2-Methoxy-6-[(4-methylphenyl)iminomethyl]phenoxy}phthalonitrile

# Serap Yazıcı,<sup>a</sup> Abdullah Akkaya,<sup>a</sup> Erbil Ağar,<sup>b</sup> İsmet Şenel<sup>a</sup> and Orhan Büyükgüngör<sup>a</sup>\*

<sup>a</sup>Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit–Samsun, Turkey, and <sup>b</sup>Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit–Samsun, Turkey Correspondence e-mail: orhanb@omu.edu.tr

Received 17 April 2009; accepted 24 April 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.122; data-to-parameter ratio = 14.5.

In the molecule of the title compound,  $C_{23}H_{17}N_3O_2$ , the methoxyphenyl ring is oriented at dihedral angles of 13.34 (12) and 88.83 (12)° with respect to the methylphenyl and phthalonitrile rings, respectively; the dihedral angle between methylphenyl and phthalonitrile rings is 89.67 (10)°. In the crystal structure, weak intermolecular  $C-H\cdots N$  interactions link molecules into chains. A weak  $C-H\cdots \pi$  interaction is also found.

### **Related literature**

For a related structure, see: Ocak İskeleli *et al.* (2005). For general background to substituted phthalonitriles, see: McKeown (1998); Leznoff & Lever (1989–1996). For bondlength data, see: Allen *et al.* (1987).



 $M_r = 367.40$ 

## Experimental

Crystal data C<sub>23</sub>H<sub>17</sub>N<sub>3</sub>O<sub>2</sub> Monoclinic,  $P2_1/c$  a = 9.3549 (5) Å b = 23.6606 (13) Å c = 8.9317 (5) Å  $\beta = 97.256$  (4)° V = 1961.13 (19) Å<sup>3</sup>

#### Data collection

| Stoe IPDS-II diffractometer            | 10306 measured reflections             |
|----------------------------------------|----------------------------------------|
| Absorption correction: integration     | 3680 independent reflections           |
| (X-RED32; Stoe & Cie, 2002)            | 1962 reflections with $I > 2\sigma(I)$ |
| $T_{\min} = 0.703, \ T_{\max} = 0.952$ | $R_{\rm int} = 0.072$                  |
| Refinement                             |                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.048$        | 253 parameters                         |

Z = 4

Mo  $K\alpha$  radiation

 $0.67 \times 0.36 \times 0.20 \text{ mm}$ 

 $\mu = 0.08 \text{ mm}^{-1}$ 

T = 296 K

 $\begin{aligned} R[F > 20(F)] &= 0.048 \\ wR(F^2) &= 0.122 \\ S &= 0.96 \\ 3680 \text{ reflections} \end{aligned}$ 

# Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$          | D-H  | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|---------------------------|------|--------------|--------------|---------------------------|
| $C4 - H4 \cdots N2^{i}$   | 0.93 | 2.62         | 3.483 (3)    | 154                       |
| C18 - H18 \cdots Cg2^{ii} | 0.93 | 2.77         | 3.694 (3)    | 171                       |

Symmetry codes: (i) -x + 1,  $y + \frac{1}{2}$ ,  $-z + \frac{3}{2}$ ; (ii) x, y, z + 1. Cg2 is the centroid of the C9–C14 ring.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant No. F279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2671).

### References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Leznoff, C. C. & Lever, A. B. P. (1989–1996). *Phthalocyanines: Properties and Applications*, Vols. 1–4. Weinheim, New York: VCH Publishers Inc.
- McKeown, N. B. (1998). In *Phthalocyanine Materials: Synthesis, Structure and Function*. Cambridge University Press.

Ocak İskeleli, N., Atalay, S., Ağar, E. & Akdemir, N. (2005). Acta Cryst. E61, o2294-o2295.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (2009). E65, o1172 [doi:10.1107/S1600536809015402]

# 4-{2-Methoxy-6-[(4-methylphenyl)iminomethyl]phenoxy}phthalonitrile

# S. Yazici, A. Akkaya, E. Agar, I. Senel and O. Büyükgüngör

### Comment

Substituted phthalonitriles are generally used for preparing symmetrically and unsymmetrically peripherally and non-peripherally substituted phthalocyanines and subphthalocyanines (McKeown, 1998; Leznoff & Lever, 1989-1996). In addition to their extensive use as dyes and pigments, phthalocyanines have found widespread applications in catalysis, in optical recording, as photoconductive materials, in photo-dynamic therapy and as chemical sensors (Leznoff & Lever, 1989-1996). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. The N2=C22 [1.133 (3) Å] and N3=C23 [1.145 (3) Å] bonds show N=C triple bond character and are in good agreement with the literature values (Ocak İskeleli *et al.*, 2005). Rings A (C1-C6), B (C9-C14) and C (C16-C21) are, of course, planar, and they are oriented at dihedral angles of A/B = 13.34 (12), A/C = 88.83 (12) and B/C = 89.67 (10) °.

In the crystal structure, weak intermolecular C-H···N interactions (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure. There also exists a weak C-H··· $\pi$  interaction (Table 1).

### **Experimental**

For the preparation of the title compound, potasium carbonato (0.9 g, 6.58 mmol) was added to a solution of solid *o*-vaniline (0.5 g, 3.29 mmol) in DMF. The mixture was stirred for 30 min under nitrogen atmosphere. 4-Nitrophtalonitrile solution in DMF was added. The mixture was stirred for 48 h at 323 K under nitrogen atmosphere and poured into ice-water (150 g). The product 2-(3,4-dicyanophenoxy)-3-methoxybenzaldehyde was filtered off and washed with water. The title compound was prepared by refluxing a mixture of a solution containing 2-(3,4-Dicyanophenoxy)-3-methoxybenzaldehyde (0.5 g, 1.799 mmol) in ethanol (20 ml) and a solution containing 4-methylaniline (0.218 g 1.799 mmol) in ethanol (20 ml). The reaction mixture was stirred for 1 h under reflux. Crystals suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield; 55%, m.p. 427-429 K).

## Refinement

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with  $U_{iso}(H) = xU_{eq}(C)$ , where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Figures



Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

# 4-{2-Methoxy-6-[(4-methylphenyl)iminomethyl]phenoxy}phthalonitrile

| Crystal data                   |                                              |
|--------------------------------|----------------------------------------------|
| $C_{23}H_{17}N_3O_2$           | $F_{000} = 768$                              |
| $M_r = 367.40$                 | $D_{\rm x} = 1.244 {\rm ~Mg~m}^{-3}$         |
| Monoclinic, $P2_1/c$           | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc           | Cell parameters from 9188 reflections        |
| a = 9.3549(5) Å                | $\theta = 1.7 - 26.2^{\circ}$                |
| b = 23.6606 (13)  Å            | $\mu = 0.08 \text{ mm}^{-1}$                 |
| c = 8.9317 (5)  Å              | <i>T</i> = 296 K                             |
| $\beta = 97.256 \ (4)^{\circ}$ | Prism, yellow                                |
| $V = 1961.13 (19) \text{ Å}^3$ | $0.67 \times 0.36 \times 0.20 \text{ mm}$    |
| Z = 4                          |                                              |

### Data collection

| Stoe IPDS-II<br>diffractometer                                    | 3680 independent reflections           |
|-------------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                          | 1962 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                           | $R_{\rm int} = 0.072$                  |
| Detector resolution: 6.67 pixels mm <sup>-1</sup>                 | $\theta_{\text{max}} = 25.6^{\circ}$   |
| T = 296  K                                                        | $\theta_{\min} = 1.7^{\circ}$          |
| ω scans                                                           | $h = -11 \rightarrow 10$               |
| Absorption correction: integration<br>(X-RED32; Stoe & Cie, 2002) | $k = -28 \rightarrow 28$               |
| $T_{\min} = 0.703, \ T_{\max} = 0.952$                            | $l = -10 \rightarrow 10$               |
|                                                                   |                                        |

### 10306 measured reflections

## Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                      |
|--------------------------------------------------------|---------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                  |
| $R[F^2 > 2\sigma(F^2)] = 0.048$                        | H-atom parameters constrained                                             |
| $wR(F^2) = 0.122$                                      | $w = 1/[\sigma^2(F_o^2) + (0.0491P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 0.96                                        | $(\Delta/\sigma)_{\rm max} < 0.001$                                       |
| 3680 reflections                                       | $\Delta \rho_{max} = 0.12 \text{ e } \text{\AA}^{-3}$                     |
| 253 parameters                                         | $\Delta \rho_{\rm min} = -0.10 \text{ e } \text{\AA}^{-3}$                |
| Primary atom site location: structure-invariant direct | Extinction correction: none                                               |

methods

## Special details

### Experimental. 140 frames, detector distance = 130 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor wR and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | У            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|--------------|--------------|---------------------------|
| 01  | 0.38836 (16) | 0.44741 (6)  | 0.57255 (15) | 0.0725 (4)                |
| O2  | 0.49525 (18) | 0.52245 (6)  | 0.77461 (17) | 0.0879 (5)                |
| N1  | 0.0395 (2)   | 0.47793 (7)  | 0.26224 (19) | 0.0737 (5)                |
| N2  | 0.4483 (3)   | 0.21068 (11) | 0.7035 (4)   | 0.1657 (14)               |
| N3  | 0.1213 (3)   | 0.23410 (10) | 0.9455 (3)   | 0.1180 (9)                |
| C1  | 0.2188 (2)   | 0.51464 (8)  | 0.4521 (2)   | 0.0659 (6)                |
| C2  | 0.1712 (3)   | 0.57046 (9)  | 0.4401 (2)   | 0.0768 (6)                |
| H2  | 0.0969       | 0.5805       | 0.3657       | 0.092*                    |
| C3  | 0.2339 (3)   | 0.61054 (9)  | 0.5379 (2)   | 0.0798 (7)                |
| H3  | 0.2028       | 0.6478       | 0.5273       | 0.096*                    |
| C4  | 0.3424 (3)   | 0.59675 (9)  | 0.6520 (2)   | 0.0760 (7)                |
| H4  | 0.3828       | 0.6245       | 0.7181       | 0.091*                    |
| C5  | 0.3905 (2)   | 0.54177 (9)  | 0.6673 (2)   | 0.0687 (6)                |
| C6  | 0.3289 (2)   | 0.50179 (8)  | 0.5654 (2)   | 0.0644 (5)                |
| C7  | 0.5596 (3)   | 0.56217 (11) | 0.8831 (3)   | 0.1040 (9)                |
| H7A | 0.6256       | 0.5429       | 0.9569       | 0.156*                    |

| H7B  | 0.4859      | 0.5800       | 0.9320      | 0.156*      |
|------|-------------|--------------|-------------|-------------|
| H7C  | 0.6106      | 0.5903       | 0.8333      | 0.156*      |
| C8   | 0.1525 (3)  | 0.46997 (9)  | 0.3529 (2)  | 0.0727 (6)  |
| H8   | 0.1954      | 0.4344       | 0.3568      | 0.087*      |
| С9   | -0.0244 (2) | 0.43225 (9)  | 0.1744 (2)  | 0.0683 (6)  |
| C10  | -0.0023 (3) | 0.37542 (10) | 0.2086 (2)  | 0.0818 (7)  |
| H10  | 0.0624      | 0.3649       | 0.2917      | 0.098*      |
| C11  | -0.0759 (3) | 0.33451 (10) | 0.1202 (3)  | 0.0872 (7)  |
| H11  | -0.0599     | 0.2967       | 0.1450      | 0.105*      |
| C12  | -0.1731 (3) | 0.34819 (11) | -0.0046 (3) | 0.0870 (7)  |
| C13  | -0.1944 (3) | 0.40459 (11) | -0.0376 (3) | 0.0854 (7)  |
| H13  | -0.2589     | 0.4149       | -0.1209     | 0.102*      |
| C14  | -0.1221 (2) | 0.44613 (10) | 0.0501 (2)  | 0.0761 (6)  |
| H14  | -0.1391     | 0.4839       | 0.0254      | 0.091*      |
| C15  | -0.2535 (4) | 0.30258 (13) | -0.0997 (4) | 0.1312 (12) |
| H15A | -0.2834     | 0.3170       | -0.1993     | 0.197*      |
| H15B | -0.3367     | 0.2913       | -0.0543     | 0.197*      |
| H15C | -0.1914     | 0.2706       | -0.1059     | 0.197*      |
| C16  | 0.3328 (2)  | 0.40673 (8)  | 0.6576 (2)  | 0.0626 (6)  |
| C17  | 0.2221 (3)  | 0.41613 (8)  | 0.7412 (2)  | 0.0674 (6)  |
| H17  | 0.1823      | 0.4520       | 0.7452      | 0.081*      |
| C18  | 0.1699 (3)  | 0.37193 (9)  | 0.8193 (2)  | 0.0728 (6)  |
| H18  | 0.0952      | 0.3784       | 0.8767      | 0.087*      |
| C19  | 0.2270 (3)  | 0.31831 (9)  | 0.8135 (3)  | 0.0745 (6)  |
| C20  | 0.3403 (3)  | 0.30971 (9)  | 0.7282 (3)  | 0.0793 (7)  |
| C21  | 0.3937 (3)  | 0.35393 (9)  | 0.6509 (3)  | 0.0776 (7)  |
| H21  | 0.4699      | 0.3481       | 0.5951      | 0.093*      |
| C22  | 0.4004 (3)  | 0.25418 (11) | 0.7156 (4)  | 0.1104 (10) |
| C23  | 0.1688 (3)  | 0.27176 (10) | 0.8882 (3)  | 0.0904 (8)  |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-----------------|-----------------|--------------|--------------|--------------|
| 01  | 0.0718 (10) | 0.0594 (9)      | 0.0864 (10)     | 0.0058 (8)   | 0.0110 (8)   | -0.0032 (7)  |
| O2  | 0.0908 (12) | 0.0751 (10)     | 0.0908 (10)     | -0.0005 (9)  | -0.0153 (9)  | -0.0078 (8)  |
| N1  | 0.0850 (14) | 0.0644 (11)     | 0.0691 (10)     | -0.0018 (10) | -0.0001 (10) | 0.0018 (9)   |
| N2  | 0.156 (3)   | 0.0656 (15)     | 0.262 (4)       | 0.0429 (17)  | -0.026 (3)   | -0.0140 (19) |
| N3  | 0.159 (3)   | 0.0703 (14)     | 0.1152 (17)     | -0.0202 (15) | -0.0180 (16) | 0.0176 (12)  |
| C1  | 0.0758 (15) | 0.0581 (12)     | 0.0637 (12)     | -0.0014 (11) | 0.0079 (11)  | -0.0006 (9)  |
| C2  | 0.0941 (18) | 0.0625 (13)     | 0.0720 (13)     | 0.0039 (12)  | 0.0039 (12)  | 0.0086 (11)  |
| C3  | 0.107 (2)   | 0.0508 (12)     | 0.0819 (15)     | 0.0015 (12)  | 0.0138 (14)  | 0.0061 (11)  |
| C4  | 0.0931 (19) | 0.0586 (13)     | 0.0759 (14)     | -0.0114 (13) | 0.0091 (13)  | -0.0052 (10) |
| C5  | 0.0731 (15) | 0.0603 (13)     | 0.0718 (13)     | -0.0069 (11) | 0.0056 (11)  | -0.0004 (10) |
| C6  | 0.0700 (14) | 0.0518 (11)     | 0.0722 (13)     | 0.0001 (11)  | 0.0119 (11)  | 0.0013 (10)  |
| C7  | 0.101 (2)   | 0.1008 (19)     | 0.1020 (17)     | -0.0055 (16) | -0.0182 (16) | -0.0239 (15) |
| C8  | 0.0841 (17) | 0.0602 (13)     | 0.0723 (13)     | 0.0028 (12)  | 0.0044 (13)  | -0.0034 (10) |
| C9  | 0.0737 (15) | 0.0658 (13)     | 0.0644 (12)     | -0.0017 (11) | 0.0045 (11)  | 0.0013 (10)  |
| C10 | 0.0931 (19) | 0.0699 (15)     | 0.0781 (14)     | -0.0045 (14) | -0.0053 (13) | 0.0021 (11)  |

| C11 | 0.098 (2)   | 0.0698 (15) | 0.0914 (16) | -0.0100 (14) | 0.0039 (14)  | -0.0001 (13) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C12 | 0.0813 (18) | 0.0915 (18) | 0.0861 (16) | -0.0141 (14) | 0.0018 (14)  | -0.0090 (14) |
| C13 | 0.0804 (18) | 0.0994 (19) | 0.0735 (15) | -0.0033 (15) | -0.0012 (13) | 0.0018 (13)  |
| C14 | 0.0740 (16) | 0.0793 (15) | 0.0734 (13) | 0.0026 (13)  | 0.0026 (12)  | 0.0045 (11)  |
| C15 | 0.130 (3)   | 0.120 (2)   | 0.134 (2)   | -0.032 (2)   | -0.022 (2)   | -0.0259 (19) |
| C16 | 0.0624 (14) | 0.0501 (11) | 0.0714 (13) | 0.0010 (10)  | -0.0061 (11) | -0.0064 (10) |
| C17 | 0.0770 (16) | 0.0477 (11) | 0.0750 (13) | 0.0066 (11)  | -0.0003 (12) | -0.0028 (9)  |
| C18 | 0.0842 (18) | 0.0575 (13) | 0.0750 (13) | -0.0002 (12) | 0.0029 (12)  | 0.0007 (10)  |
| C19 | 0.0826 (17) | 0.0507 (13) | 0.0829 (14) | -0.0001 (12) | -0.0184 (13) | 0.0014 (10)  |
| C20 | 0.0807 (17) | 0.0462 (12) | 0.1017 (17) | 0.0116 (12)  | -0.0253 (15) | -0.0064 (11) |
| C21 | 0.0691 (16) | 0.0583 (13) | 0.1014 (16) | 0.0125 (12)  | -0.0047 (12) | -0.0136 (12) |
| C22 | 0.104 (2)   | 0.0576 (15) | 0.159 (3)   | 0.0155 (15)  | -0.0258 (19) | -0.0029 (15) |
| C23 | 0.113 (2)   | 0.0544 (14) | 0.0954 (17) | -0.0048 (14) | -0.0198 (15) | 0.0066 (12)  |

Geometric parameters (Å, °)

| C1—C6     | 1.384 (3)   | C11—H11     | 0.9300    |
|-----------|-------------|-------------|-----------|
| C1—C2     | 1.393 (3)   | C12—C13     | 1.376 (3) |
| C1—C8     | 1.465 (3)   | C12—C15     | 1.513 (3) |
| C2—C3     | 1.370 (3)   | C13—C14     | 1.379 (3) |
| С2—Н2     | 0.9300      | С13—Н13     | 0.9300    |
| C3—C4     | 1.384 (3)   | C14—H14     | 0.9300    |
| С3—Н3     | 0.9300      | C15—H15A    | 0.9600    |
| C4—C5     | 1.377 (3)   | C15—H15B    | 0.9600    |
| C4—H4     | 0.9300      | C15—H15C    | 0.9600    |
| C5—O2     | 1.361 (2)   | C16—O1      | 1.369 (2) |
| C5—C6     | 1.386 (3)   | C16—C17     | 1.369 (3) |
| C6—O1     | 1.400 (2)   | C16—C21     | 1.378 (3) |
| C7—O2     | 1.427 (3)   | C17—C18     | 1.381 (3) |
| C7—H7A    | 0.9600      | С17—Н17     | 0.9300    |
| С7—Н7В    | 0.9600      | C18—C19     | 1.380 (3) |
| С7—Н7С    | 0.9600      | C18—H18     | 0.9300    |
| C8—N1     | 1.262 (3)   | C19—C20     | 1.397 (3) |
| С8—Н8     | 0.9300      | C19—C23     | 1.431 (4) |
| C9—C14    | 1.385 (3)   | C20—C21     | 1.381 (3) |
| C9—C10    | 1.389 (3)   | C20—C22     | 1.439 (3) |
| C9—N1     | 1.422 (3)   | C21—H21     | 0.9300    |
| C10-C11   | 1.378 (3)   | C22—N2      | 1.133 (3) |
| С10—Н10   | 0.9300      | C23—N3      | 1.145 (3) |
| C11—C12   | 1.385 (3)   |             |           |
| C16—O1—C6 | 119.67 (16) | C10-C11-H11 | 119.1     |
| C5—O2—C7  | 117.49 (18) | C12—C11—H11 | 119.1     |
| C8—N1—C9  | 120.00 (19) | C13—C12—C11 | 117.5 (2) |
| C6—C1—C2  | 117.71 (19) | C13—C12—C15 | 121.6 (2) |
| C6—C1—C8  | 120.19 (19) | C11—C12—C15 | 121.0 (3) |
| C2—C1—C8  | 122.1 (2)   | C12-C13-C14 | 121.5 (2) |
| C3—C2—C1  | 120.1 (2)   | С12—С13—Н13 | 119.2     |
| С3—С2—Н2  | 120.0       | C14—C13—H13 | 119.2     |
| C1—C2—H2  | 120.0       | C13—C14—C9  | 120.8 (2) |

| $C^{2}-C^{3}-C^{4}$          | 1214(2)                | C13—C14—H14                         | 119.6                |
|------------------------------|------------------------|-------------------------------------|----------------------|
| C2—C3—H3                     | 1193                   | C9—C14—H14                          | 119.6                |
| C4—C3—H3                     | 119.3                  | C12—C15—H15A                        | 109.5                |
| $C_{5} - C_{4} - C_{3}$      | 119.7 (2)              | C12—C15—H15B                        | 109.5                |
| C5-C4-H4                     | 120.2                  | H15A—C15—H15B                       | 109.5                |
| C3—C4—H4                     | 120.2                  | C12 - C15 - H15C                    | 109.5                |
| $0^{2}-C^{5}-C^{4}$          | 125.72 (19)            | H15A - C15 - H15C                   | 109.5                |
| 02 - 05 - 01                 | 115 83 (19)            | H15B-C15-H15C                       | 109.5                |
| C4—C5—C6                     | 118.5 (2)              | 01-C16-C17                          | 123 69 (18)          |
| C1 - C6 - C5                 | 122.64(19)             | 01 - C16 - C21                      | 115 2 (2)            |
| C1 - C6 - O1                 | 119 32 (17)            | $C_{17} - C_{16} - C_{21}$          | 121.1(2)             |
| $C_{5} - C_{6} - O_{1}$      | 117.88 (19)            | C16-C17-C18                         | 1195(2)              |
| $\Omega^2$ — $C7$ — $H7A$    | 109 5                  | C16—C17—H17                         | 120.2                |
| $O^2$ — $C^7$ — $H^7B$       | 109.5                  | C18 - C17 - H17                     | 120.2                |
| H7A - C7 - H7B               | 109.5                  | C19 - C18 - C17                     | 120.2<br>121.0(2)    |
| $\Omega^2$ $\Gamma^7$ $H^7C$ | 109.5                  | C19-C18-H18                         | 119 5                |
| H7A - C7 - H7C               | 109.5                  | C17_C18_H18                         | 119.5                |
| H7B_C7_H7C                   | 109.5                  | $C_{18}$ $C_{19}$ $C_{20}$          | 119.5<br>118.6(2)    |
| N1_C8_C1                     | 109.5<br>122.4(2)      | $C_{18} - C_{19} - C_{23}$          | 121.2(3)             |
| N1_C8_H8                     | 118.8                  | $C_{10} - C_{19} - C_{23}$          | 121.2(3)<br>120.2(2) |
| C1 - C8 - H8                 | 118.8                  | $C_{20} = C_{10} = C_{20} = C_{10}$ | 120.2(2)             |
| $C_{14} - C_{9} - C_{10}$    | 118.1 (2)              | $C_{21} = C_{20} = C_{12}$          | 120.0(2)<br>118.9(3) |
| $C_{14} - C_{9} - N_{1}$     | 116.1(2)<br>116.8(2)   | $C_{21} = C_{20} = C_{22}$          | 110.9(3)             |
| C10-C9-N1                    | 110.0(2)<br>125.02(10) | $C_{10} = C_{20} = C_{22}$          | 120.4(3)<br>119.2(2) |
| $C_{10} = C_{10} = C_{10}$   | 120.3(2)               | $C_{10} = C_{21} = C_{20}$          | 119.2 (2)            |
| C11 C10 H10                  | 110.0                  | $C_{10} = C_{21} = H_{21}$          | 120.4                |
| $C_{11}$ $C_{10}$ $H_{10}$   | 119.9                  | N2 C22 C20                          | 120.4                |
| $C_{10} = C_{10} = C_{10}$   | 119.9                  | $N_2 = C_{22} = C_{20}$             | 178.9(4)             |
|                              | 121.6 (2)              |                                     | 178.8 (3)            |
| C1—C6—O1—C16                 | -91.4 (2)              | C2—C1—C8—N1                         | -7.8(3)              |
| C5-C6-O1-C16                 | 93.0 (2)               | C14—C9—C10—C11                      | 0.2 (4)              |
| C17—C16—O1—C6                | -1.5 (3)               | NI-C9-C10-C11                       | 176.3 (2)            |
| C21-C16-O1-C6                | 176.75 (18)            | C9—C10—C11—C12                      | 0.1 (4)              |
| C4—C5—O2—C7                  | 1.3 (3)                | C10-C11-C12-C13                     | -0.2 (4)             |
| C6—C5—O2—C7                  | -179.0 (2)             | C10-C11-C12-C15                     | -179.6 (3)           |
| C1—C8—N1—C9                  | -176.67 (18)           | C11—C12—C13—C14                     | -0.1 (4)             |
| C14—C9—N1—C8                 | -162.8 (2)             | C15—C12—C13—C14                     | 179.4 (3)            |
| C10—C9—N1—C8                 | 21.0 (4)               | C12—C13—C14—C9                      | 0.4 (4)              |
| C6—C1—C2—C3                  | 0.5 (3)                | C10—C9—C14—C13                      | -0.5 (3)             |
| C8—C1—C2—C3                  | 178.3 (2)              | N1—C9—C14—C13                       | -176.9 (2)           |
| C1—C2—C3—C4                  | -1.5 (4)               | O1—C16—C17—C18                      | 177.77 (19)          |
| C2—C3—C4—C5                  | 0.9 (4)                | C21—C16—C17—C18                     | -0.4 (3)             |
| C3—C4—C5—O2                  | -179.5 (2)             | C16—C17—C18—C19                     | -0.5 (3)             |
| C3—C4—C5—C6                  | 0.8 (3)                | C17—C18—C19—C20                     | 0.8 (3)              |
| C2—C1—C6—C5                  | 1.2 (3)                | C17—C18—C19—C23                     | -176.9 (2)           |
| C8—C1—C6—C5                  | -176.7 (2)             | C18—C19—C20—C21                     | -0.2 (3)             |
| C2-C1-C6-O1                  | -174.27 (19)           | C23—C19—C20—C21                     | 177.5 (2)            |
| C8—C1—C6—O1                  | 7.9 (3)                | C18—C19—C20—C22                     | -178.3 (2)           |
| O2—C5—C6—C1                  | 178.4 (2)              | C23—C19—C20—C22                     | -0.6 (3)             |
| C4—C5—C6—C1                  | -1.8 (3)               | O1—C16—C21—C20                      | -177.32 (19)         |

| O2—C5—C6—O1<br>C4—C5—C6—O1<br>C6—C1—C8—N1 | -6.1 (3)<br>173.70 (19)<br>169.9 (2) | C17—C16—C21—C20<br>C19—C20—C21—C16<br>C22—C20—C21—C16 |              | 1.0 (3)<br>-0.7 (3)<br>177.4 (2) |
|-------------------------------------------|--------------------------------------|-------------------------------------------------------|--------------|----------------------------------|
| Hydrogen-bond geometry (Å, °)             |                                      |                                                       |              |                                  |
| D—H···A                                   | <i>D</i> —Н                          | H···A                                                 | $D \cdots A$ | D—H···A                          |
| C4—H4····N2 <sup>i</sup>                  | 0.93                                 | 2.62                                                  | 3.483 (3)    | 154                              |
| C18—H18····Cg2 <sup>ii</sup>              | 0.93                                 | 2.77                                                  | 3.694 (3)    | 171                              |

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) x, y, z+1.

Fig. 1





